http://www.ncbi.nlm.nih.gov/pubmed/22348993
Med Hypotheses. 2012 Feb 18. [Epub ahead of print]
Genetic selection of embryos that later develop the metabolic syndrome.
Edwards MJ.
Source
Department of Paediatrics, School of Medicine, University of Western Sydney, Australia.
Abstract
THE BARKER HYPOTHESIS: Is an excellent explanation of the process where human and animal foetuses exposed to malnutrition, either by maternal malnutrition or placental insufficiency, are metabolically programmed, with selective stunting of cell differentiation and organ growth. With the postnatal excess of nutrition observed in developed countries, this irreversible programming causes metabolic syndrome, including obesity, type 2 diabetes, and hypertension. Metabolic programming involves epigenetic changes including imprinting which might be transmitted through more than one generation rather than being completely re-set or erased during reproduction. The Barker hypothesis was supported by epidemiological data that recognised no excess fetal or postnatal mortality when pregnant women were starved during the Dutch famine in World War II. This argued against the "thrifty genotype" theory introduced in 1962, which proposed that starvation selected against members of the population with less "thrifty" genes, but the survivors who had "thrifty" genes developed metabolic syndrome if they were subsequently over-nourished. EMBRYONIC/FETAL SELECTION: Embryos or early foetuses could be selected very early in pregnancy on the basis of their genotype, by maternal malnutrition, hypertension, obesity or other causes of placental insufficiency. The genotype that allows embryos, or cells within them, to survive a less hospitable environment in the decidua after implantation might contribute to the later development of metabolic syndrome. This article hypothesises that an adverse intrauterine environment, caused by maternal malnutrition or placental insufficiency, kills a proportion of embryos and selects a surviving population of early embryos whose growth in utero is retarded by their genotype, their environment or a combination of both. The metabolic syndrome follows if the offspring is over-nourished later in life. The embryonic selection hypothesis presented here could be tested by using single nucleotide polymorphism (SNP) microarrays to study adults who had a history of intrauterine growth retardation (IUGR) and subsequent metabolic syndrome. Their SNP array could be compared with their parents and unaffected unrelated or related controls. If there were no selection based on a "thrifty genotype", all parental sequences would be expected to appear in their surviving children, whether or not they had IUGR or developed metabolic syndrome. SNP sequences present in parents or controls but missing from adult offspring with metabolic syndrome who had IUGR, could be associated with or linked to genes that influence susceptibility to metabolic syndrome. This hypothesis proposes that missing genotypes would be lost if the embryos that inherited them died very early in pregnancy.
No comments:
Post a Comment