http://www.ncbi.nlm.nih.gov/pubmed/21743433
Mod Pathol. 2011 Dec;24(12):1571-7. doi: 10.1038/modpathol.2011.109. Epub 2011 Jul 8.
KRAS mutant allele-specific imbalance in lung adenocarcinoma.
Chiosea SI, Sherer CK, Jelic T, Dacic S.
Source
Department of Pathology, University of Pittsburgh Medical Center, Presbyterian University Hospital, Pittsburgh, PA, USA. chioseasi@upmc.edu
Abstract
The significance of KRAS mutant allele-specific imbalance (MASI) in lung adenocarcinomas is unknown. KRAS MASI was defined as predominance of the mutant allele over the wild-type allele. We assessed the frequency of KRAS MASI by comparing peak heights of mutant and wild-type alleles on sequencing electropherograms and by KRAS fluorescence in situ hybridization (FISH). A review of sequencing electropherograms of 207 KRAS-mutated lung adenocarcinomas demonstrated 23 (11%) cases with the mutant allele peak higher than the wild-type allele peak and 15 (7%) cases with the mutant allele peak equal to the wild-type allele peak. Of 17 cases with the mutant allele peak higher or equal to the wild-type allele peak, 8 (47%) showed KRAS amplification by FISH. KRAS FISH analysis of 36 KRAS-mutated lung adenocarcinomas with the mutant allele peak lower than the wild-type allele peak, 21 KRAS and EGFR wild-type and 16 EGFR-mutated adenocarcinomas showed no KRAS amplification. KRAS MASI was associated with selective amplification of the KRAS mutant allele (P<0.001). Patients with KRAS MASI showed worse overall survival. The cumulative proportion surviving at 17 months for KRAS MASI group was 35% compared with 84.1% for patients with KRAS mutant allele peak lower than wild-type allele peak (P=0.012). The adverse prognostic significance of KRAS MASI was independent of clinical stage and was maintained among stage I patients. The detection of KRAS MASI in lung adenocarcinomas by sequencing electropherograms may identify patients with more aggressive disease.
No comments:
Post a Comment