Saturday, November 24, 2012

From the Wisconsin State Journal: "Food liberties attacked in our free society"

http://host.madison.com/wsj/news/opinion/mailbag/margo-redmond-food-liberties-attacked-in-our-free-society/article_b5c9a7c6-3418-11e2-8959-001a4bcf887a.html

Margo Redmond: Food liberties attacked in our free society


3 hours ago


This Thanksgiving, as usual, what I was most thankful for is to live in a free society.
But I am also chagrined knowing that a dairy farmer living in Loganville may lose his freedom in January when he goes on trial in Sauk County for distributing natural (unpasteurized) milk to neighbors and friends who wanted it.
His name is Vernon Herschberger, and he is trying to make a living in a difficult economy to support his 10 children.
His oppressor is the state Department of Agriculture, Trade and Consumer Protection, which claims to advocate for public health, even though dairy land residents have been drinking natural milk for generations without much incident.


Read more: http://host.madison.com/news/opinion/mailbag/margo-redmond-food-liberties-attacked-in-our-free-society/article_b5c9a7c6-3418-11e2-8959-001a4bcf887a.html#ixzz2D9SoETGD







But cf:


 2009 Sep;6(7):793-806.

Food safety hazards associated with consumption of raw milk.

Source

Department of Animal Science, The University of Tennessee, Knoxville, Tennessee 37996, USA. soliver@utk.edu

Abstract

An increasing number of people are consuming raw unpasteurized milk. Enhanced nutritional qualities, taste, and health benefits have all been advocated as reasons for increased interest in raw milk consumption. However, science-based data to substantiate these claims are limited. People continue to consume raw milk even though numerous epidemiological studies have shown clearly that raw milk can be contaminated by a variety of pathogens, some of which are associated with human illness and disease. Several documented milkborne disease outbreaks occurred from 2000-2008 and were traced back to consumption of raw unpasteurized milk. Numerous people were found to have infections, some were hospitalized, and a few died. In the majority of these outbreaks, the organism associated with the milkborne outbreak was isolated from the implicated product(s) or from subsequent products made at the suspected dairy or source. In contrast, fewer milkborne disease outbreaks were associated with consumption of pasteurized milk during this same time period. Twenty nine states allow the sale of raw milk by some means. Direct purchase, cow-share or leasing programs, and the sale of raw milk as pet food have been used as means for consumers to obtain raw milk. Where raw milk is offered for sale, strategies to reduce risks associated with raw milk and products made from raw milk are needed. Developing uniform regulations including microbial standards for raw milk to be sold for human consumption, labeling of raw milk, improving sanitation during milking, and enhancing and targeting educational efforts are potential approaches to this issue. Development of pre- and postharvest control measures to effectively reduce contamination is critical to the control of pathogens in raw milk. One sure way to prevent raw milk-associated foodborne illness is for consumers to refrain from drinking raw milk and from consuming dairy products manufactured using raw milk.


 2005 Summer;2(2):115-29.

Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications.

Source

Food Safety Center of Excellence and Department of Animal Science, 59 McCord Hall, The University of Tennessee, Knoxville, TN 37996, USA. soliver@utk.edu

Abstract

Milk and products derived from milk of dairy cows can harbor a variety of microorganisms and can be important sources of foodborne pathogens. The presence of foodborne pathogens in milk is due to direct contact with contaminated sources in the dairy farm environment and to excretion from the udder of an infected animal. Most milk is pasteurized, so why should the dairy industry be concerned about the microbial quality of bulk tank milk? There are several valid reasons, including (1) outbreaks of disease in humans have been traced to the consumption of unpasteurized milk and have also been traced back to pasteurized milk, (2) unpasteurized milk is consumed directly by dairy producers, farm employees, and their families, neighbors, and raw milk advocates, (3) unpasteurized milk is consumed directly by a large segment of the population via consumption of several types of cheeses manufactured from unpasteurized milk, (4) entry of foodborne pathogens via contaminated raw milk into dairy food processing plants can lead to persistence of these pathogens in biofilms, and subsequent contamination of processed milk products and exposure of consumers to pathogenic bacteria, (5) pasteurization may not destroy all foodborne pathogens in milk, and (6) inadequate or faulty pasteurization will not destroy all foodborne pathogens. Furthermore, pathogens such as Listeria monocytogenes can survive and thrive in post-pasteurization processing environments, thus leading to recontamination of dairy products. These pathways pose a risk to the consumer from direct exposure to foodborne pathogens present in unpasteurized dairy products as well as dairy products that become re-contaminated after pasteurization. The purpose of this communication is to review literature published on the prevalence of bacterial foodborne pathogens in milk and in the dairy environment, and to discuss public health and food safety issues associated with foodborne pathogens found in the dairy environment. Information presented supports the model in which the presence of pathogens depends on ingestion of contaminated feed followed by amplification in bovine hosts and fecal dissemination in the farm environment. The final outcome of this cycle is a constantly maintained reservoir of foodborne pathogens that can reach humans by direct contact, ingestion of raw contaminated milk or cheese, or contamination during the processing of milk products. Isolation of bacterial pathogens with similar biotypes from dairy farms and from outbreaks of human disease substantiates this hypothesis.


 2006 Jul;89(7):2451-8.

A survey of foodborne pathogens in bulk tank milk and raw milk consumption among farm families in pennsylvania.

Source

The Department of Veterinary Science, The Pennsylvania State University, University Park 16802, USA. bmj3@psu.edu

Abstract

A 2-part study was conducted to determine the risk of exposure to human pathogens from raw milk. The first part of the study focused on determiningraw milk consumption habits of dairy producers. A total of 248 dairy producers from 16 counties in Pennsylvania were surveyed. Overall, 105 (42.3%) of the 248 dairy producers consumed raw milk and 170 (68.5%) of the 248 dairy producers were aware of foodborne pathogens in raw milk. Dairy producers who were not aware of foodborne pathogens in raw milk were 2-fold more likely to consume raw milk compared with dairy producers who were aware of foodborne pathogens. The majority of dairy producers who consumed raw milk indicated that taste (72%) and convenience (60%) were the primary factors for consuming raw milk. Dairy producers who resided on the dairy farm were nearly 3-fold more likely to consume raw milkcompared with those who lived elsewhere. In the second part of the study, bulk tank milk from the 248 participating dairy herds was examined for foodborne pathogens. Campylobacter jejuni (2%), Shiga toxin-producing Escherichia coli (2.4%), Listeria monocytogenes (2.8%), Salmonella (6%), and Yersinia enterocolitica (1.2%) were detected in the milk samples. Salmonella isolates were identified as S. enterica serotype Typhimurium (n = 10) and S. enterica serotype Newport (n = 5). Of the 248 bulk tank milk samples, 32 (13%) contained > or = 1 species of bacterial pathogens. The findings of the study could assist in developing farm community-based educational programs on the risks of consuming raw milk.


 2011 May;74(5):759-68.

Prevalence of Salmonella enterica, Listeria monocytogenes, and Escherichia coli virulence factors in bulk tankmilk and in-line filters from U.S. dairies.

Source

Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Building 173, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350, USA. joann.vankessel@ars.usda.gov

Abstract

The zoonotic bacteria Salmonella enterica, Listeria monocytogenes, and Escherichia coli are known to infect dairy cows while not always causing clinical signs of disease. These pathogens are sometimes found in raw milk, and human disease outbreaks due to these organisms have been associated with the consumption of raw milk or raw milk products. Bulk tank milk (BTM) samples (536) and in-line milk filters (519) collected from dairy farms across the United States during the National Animal Health Monitoring System's Dairy 2007 study were analyzed by real-time PCR for the presence of S. enterica and pathogenic forms of E. coli and by culture techniques for the presence of L. monocytogenes. S. enterica was detected in samples from 28.1% of the dairy operations, primarily in milk filters. Salmonella was isolated from 36 of 75 PCR-positive BTM samples and 105 of 174 PCR-positive filter samples, and the isolates were serotyped. Cerro, Kentucky, Muenster, Anatum, and Newport were the most common serotypes. L. monocytogenes was isolated from 7.1% of the dairy operations, and the 1/2a complex was the most common serotype, followed by 1/2b and 4b (lineage 1). Shiga toxin genes were detected in enrichments from 15.2% of the BTM samples and from 51.0% of the filters by real-time PCR. In most cases, the cycle threshold values for the PCR indicated that toxigenic strains were not a major part of the enrichment populations. These data confirm those from earlier studies showing significant contamination of BTM by zoonotic bacterial pathogens and that the consumption of raw milk and raw milk products presents a health risk.


 2012 Nov;75(11):2031-8. doi: 10.4315/0362-028X.JFP-12-163.

Quantitative Risk Assessment of Verocytotoxin-Producing Escherichia coli O157 and Campylobacter jejuni Related to Consumption of Raw Milk in a Province in Northern Italy.

Source

Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy.

Abstract

A quantitative risk assessment was developed to describe the risk of campylobacteriosis and hemolytic uremic syndrome (HUS) linked to consumption of raw milk sold in vending machines in Northern Italy. Exposure assessment considered the microbiological status of dairy farms, expected milk contamination, storage conditions from bulk tank to home storage, microbial growth during storage, destruction experiments, consumption frequency of raw milk, age of consumers, serving size, and consumption preference. The differential risk between milk handled under regulation conditions (4°C throughout all phases) and the worst field handling conditions was considered. The probability of Campylobacter jejuni infection was modeled with a single-hit dose-response beta-Poisson model, whereas for HUS an exponential dose-response model was chosen and two probabilities were used to model the higher susceptibility of children younger than 5 years old. For every 10,000 to 20,000 consumers each year, the models predicted for the best and worst storage conditions, respectively, 2.12 and 1.14 campylobacteriosis cases and 0.02 and 0.09 HUS cases in the 0- to 5-year age group and 0.1 and 0.5 HUS cases in the >5-year age group. The expected pediatric HUS cases do not differ considerably from those reported in Italy by the Minister of Health. The model developed may be a useful tool for extending the assessment of the risk of campylobacteriosis and HUS due to raw milk consumption at the national level in Italy. Considering the epidemiological implications of this study, the risk of illness linked to raw milk consumption should not be ignored and could be reduced by the use of simple measures. Boiling milk before consumption and strict control of temperatures by farmers during raw milk distribution have significant effects on campylobacteriosis and HUS and are essential measures for risk management.








No comments:

Post a Comment