Learn Mem. 2013 Oct 16;20(11):642-7. doi: 10.1101/lm.030635.113.
Long-term exercise is needed to enhance synaptic plasticity in the hippocampus.
Source
Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
Abstract
Exercise can have many benefits for the body, but it also benefits the brain by increasing neurogenesis, synaptic plasticity, and performance on learning and memory tasks. The period of exercise needed to realize the structural and functional benefits for the brain have not been well delineated, and previous studies have used periods of exercise exposure that range from as little as 3 d to up to 6 mo. In this study, we systematically evaluated the effects of differential running periods (3, 7, 14, 28, and 56 d) on both structural (cell proliferation and maturation) and functional (in vivo LTP) changes in the dentate gyrus of adult male Sprague-Dawley rats. We found that voluntary access to a running wheel for both short- and long-term periods can increase cell proliferation in the adult DG; however, increases in neurogenesis required longer term exposure to exercise. Increases in immature neurons were not observed until animals had been running for a minimum of 14 d. Similarly, short-term periods of wheel running did not facilitate LTP in the DG of adult animals, and reliable increases in LTP were only observed with 56 d of running. These results provide us with a greater understanding of the time course of wheel running access needed to enhance DG function. Furthermore, the results indicate that the new neurons produced in response to exercise in rats do not contribute significantly to synaptic plasticity until they mature.
No comments:
Post a Comment