Wednesday, November 27, 2013

From Mike Fishbein and colleagues: A novel molecular pathway for Snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis


 2013 Nov 19. [Epub ahead of print]

A novel molecular pathway for Snail-dependent, SPARC-mediated invasion in non-small cell lung cancer pathogenesis.

Source

1Pathology and Laboratory Medicine, University of California, Los Angeles; Jonsson Comprehensive Cancer Center.

Abstract

Definition of the molecular pathogenesis of lung cancer allows investigators an enhanced understanding of the natural history of the disease, thus fostering development of new prevention strategies. In addition to regulating epithelial-to-mesenchymal transition (EMT), the transcription factor Snailexerts global effects on gene expression. Our recent studies reveal that Snail is upregulated in non-small cell lung cancer (NSCLC), is associated with poor prognosis, and promotes tumor progression in vivo. Herein, we demonstrate that overexpression of Snail leads to upregulation of Secreted Protein, Acidic and Rich in Cysteine (SPARC) in models of premalignancy and established disease, as well as in lung carcinoma tissues in situ.Snail overexpression leads to increased SPARC-dependent invasion in vitro, indicating that SPARC may play a role in lung cancer progression. Bioinformatic analysis implicates TGF-β, ERK1/2, and miR-29b as potential intermediaries in Snail-mediated upregulation of SPARC. Both the TGF-β1 ligand and TGF-βR2 are upregulated following Snail overexpression. Treatment of human bronchial epithelial cell (HBEC) lines with TGF-β1 and inhibition of TGF-β1 mRNA expression modulated SPARC expression. Inhibition of MEK phosphorylation downregulated SPARC. MiR-29b is downregulated in Snail overexpressing cell lines, while overexpression of miR-29b inhibited SPARC expression. In addition, miR-29b was upregulated following ERK inhibition, suggesting a Snail-dependent pathway by which Snail activation of TGF-β and ERK signaling results in downregulation of miR-29b and subsequent upregulation of SPARC. Our discovery of pathways responsible for Snail-induced SPARC expression contributes to the definition of NSCLC pathogenesis.

No comments:

Post a Comment