Saturday, February 8, 2014

Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution

 2014 Feb 6. [Epub ahead of print]

Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution.

Author information

  • Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergents, CNRS-IRD, UMR 7278, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, 27 Bd Jean-Moulin, Marseille Cedex 05 13385, France.

Abstract

Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs.

No comments:

Post a Comment